由于医疗保健是关键方面,健康保险已成为最大程度地减少医疗费用的重要计划。此后,由于保险的增加,医疗保健行业的欺诈活动大幅增加,欺诈行业已成为医疗费用上升的重要贡献者,尽管可以使用欺诈检测技术来减轻其影响。为了检测欺诈,使用机器学习技术。美国联邦政府的医疗补助和医疗保险服务中心(CMS)在本研究中使用“医疗保险D部分”保险索赔来开发欺诈检测系统。在类不平衡且高维的Medicare数据集中使用机器学习算法是一项艰巨的任务。为了紧凑此类挑战,目前的工作旨在在数据采样之后执行功能提取,然后应用各种分类算法,以获得更好的性能。特征提取是一种降低降低方法,该方法将属性转换为实际属性的线性或非线性组合,生成较小,更多样化的属性集,从而降低了尺寸。数据采样通常用于通过扩大少数族裔类的频率或降低多数类的频率以获得两种类别的出现数量大约相等的频率来解决类不平衡。通过标准性能指标评估所提出的方法。因此,为了有效地检测欺诈,本研究将自动编码器作为特征提取技术,合成少数族裔过采样技术(SMOTE)作为数据采样技术,以及各种基于决策树的分类器作为分类算法。实验结果表明,自动编码器的结合,然后在LightGBM分类器上获得SMOTE,取得了最佳的结果。
translated by 谷歌翻译
深度学习为生物医学图像分割带来了最深刻的贡献,以自动化医学成像中描绘的过程。为了完成此类任务,需要使用大量注释或标记数据来训练模型,这些数据突出显示与二进制掩码的感兴趣区域。然而,有效地产生这种庞大数据的注释需要专家生物医学分析师和广泛的手动努力。这是一个繁琐而昂贵的任务,同时也容易受到人类错误的影响。为了解决这个问题,提出了一种自我监督的学习框架,BT-UNET,以通过以无监督的方式通过冗余的方式预先训练U-Net模型的编码器来预先训练U-Net模型的编码器来学习数据表示。稍后,完整的网络精确调整以执行实际分段。 BT-UNET框架可以在具有有限数量的注释样本的同时训练,同时具有大量未经发布的样本,这主要是现实世界问题的情况。通过使用标准评估指标生成有限数量标记的样本的场景,通过多个U-Net模型通过多个U-Net模型进行验证。通过详尽的实验试验,观察到BT-UNET框架在这种情况下提高了U-NET模型的性能,具有重要利润。
translated by 谷歌翻译
深度学习技术的进步为生物医学图像分析应用产生了巨大的贡献。随着乳腺癌是女性中最致命的疾病,早期检测是提高生存能力的关键手段。如超声波的医学成像呈现出色器官功能的良好视觉表现;然而,对于任何分析这种扫描的放射科学家,这种扫描是挑战和耗时,这延迟了诊断过程。虽然提出了各种深度学习的方法,但是通过乳房超声成像介绍了具有最有效的残余交叉空间关注引导u-Net(RCA-IUnet)模型的最小训练参数,以进一步改善肿瘤分割不同肿瘤尺寸的分割性能。 RCA-IUNET模型跟随U-Net拓扑,剩余初始化深度可分离卷积和混合池(MAX池和光谱池)层。此外,添加了交叉空间注意滤波器以抑制无关的特征并专注于目标结构。建议模型的分割性能在使用标准分割评估指标的两个公共数据集上验证,其中它表现出其他最先进的分段模型。
translated by 谷歌翻译
脑肿瘤是最常见和最致命的疾病,可在所有年龄组中发现。通常,采用MRI模态来通过放射科医师鉴定和诊断肿瘤。肿瘤区域的正确鉴定及其类型可以帮助诊断随访治疗计划的肿瘤。然而,对于任何分析这种扫描的放射科学家是一种复杂且耗时的任务。基于深度学习的计算机辅助诊断系统的动机,本文提出了使用MRI图像对脑肿瘤区域进行分类和分割脑肿瘤区域的多任务注意力引导的编码器。Mag-Net培训和评估了图的图解数据集,包括冠状,轴向和矢状瘤,具有3种肿瘤脑膜瘤,胶质瘤和垂体肿瘤。通过详尽的实验试验,模型与现有最先进的模型相比,实现了有希望的结果,同时在其他最先进的模型中具有至少数量的培训参数。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
新的SARS-COV-2大流行病也被称为Covid-19一直在全世界蔓延,导致生活猖獗。诸如CT,X射线等的医学成像在通过呈现器官功能的视觉表示来诊断患者时起着重要作用。然而,对于任何分析这种扫描的放射科学家是一种乏味且耗时的任务。新兴的深度学习技术展示了它的优势,在分析诸如Covid-19等疾病和病毒的速度更快的诊断中有助于帮助。在本文中,提出了一种基于自动化的基于深度学习的模型CoVID-19层级分割网络(CHS-Net),其用作语义层次分段器,以通过使用两个级联的CT医学成像来识别来自肺轮廓的Covid-19受感染的区域剩余注意力撤销U-NET(RAIU-Net)模型。 Raiu-net包括具有频谱空间和深度关注网络(SSD)的剩余成立U-Net模型,该网络(SSD)是由深度可分离卷积和混合池(MAX和频谱池)的收缩和扩展阶段开发的,以有效地编码和解码语义和不同的分辨率信息。 CHS-NET接受了分割损失函数的培训,该损失函数是二进制交叉熵损失和骰子损失的平均值,以惩罚假阴性和假阳性预测。将该方法与最近提出的方法进行比较,并使用标准度量评估,如准确性,精度,特异性,召回,骰子系数和jaccard相似度以及与Gradcam ++和不确定性地图的模型预测的可视化解释。随着广泛的试验,观察到所提出的方法优于最近提出的方法,并有效地将Covid-19受感染的地区进行肺部。
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
The machine translation mechanism translates texts automatically between different natural languages, and Neural Machine Translation (NMT) has gained attention for its rational context analysis and fluent translation accuracy. However, processing low-resource languages that lack relevant training attributes like supervised data is a current challenge for Natural Language Processing (NLP). We incorporated a technique known Active Learning with the NMT toolkit Joey NMT to reach sufficient accuracy and robust predictions of low-resource language translation. With active learning, a semi-supervised machine learning strategy, the training algorithm determines which unlabeled data would be the most beneficial for obtaining labels using selected query techniques. We implemented two model-driven acquisition functions for selecting the samples to be validated. This work uses transformer-based NMT systems; baseline model (BM), fully trained model (FTM) , active learning least confidence based model (ALLCM), and active learning margin sampling based model (ALMSM) when translating English to Hindi. The Bilingual Evaluation Understudy (BLEU) metric has been used to evaluate system results. The BLEU scores of BM, FTM, ALLCM and ALMSM systems are 16.26, 22.56 , 24.54, and 24.20, respectively. The findings in this paper demonstrate that active learning techniques helps the model to converge early and improve the overall quality of the translation system.
translated by 谷歌翻译
We study the problem of planning under model uncertainty in an online meta-reinforcement learning (RL) setting where an agent is presented with a sequence of related tasks with limited interactions per task. The agent can use its experience in each task and across tasks to estimate both the transition model and the distribution over tasks. We propose an algorithm to meta-learn the underlying structure across tasks, utilize it to plan in each task, and upper-bound the regret of the planning loss. Our bound suggests that the average regret over tasks decreases as the number of tasks increases and as the tasks are more similar. In the classical single-task setting, it is known that the planning horizon should depend on the estimated model's accuracy, that is, on the number of samples within task. We generalize this finding to meta-RL and study this dependence of planning horizons on the number of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing discount factors, and we validate its significance empirically.
translated by 谷歌翻译